переход

- на главную

ремонт

- импортных
  холодильников

- отечественных
  стиральных машин
- импортных
  стиральных машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

 Все о самостоятельном ремонте отечественных холодильников

Основные положения.

  1. Электрическое оборудование отечественных холодильников
  2. Механическое оборудование отечественных холодильников
  3. Холодильные агрегаты отечественных холодильников
  4. Компрессоры
  5. Хладагенты
  6. Устройство холодильников (статья 1) автор electronicsdesign.nm.ru
  7. Устройство холодильников (статья 2) автор masterskie.info
  8. Устройство холодильников и основные неисправности (статья 3) автор C-Lab
  9. Как разместить бытовую технику (оценка возможностей)

Напольные холодильники компрессионного типа.

  1. Устройство и ремонт холодильников марки «Атлант»
  2. Устройство холодильников марки «АПШЕРОН-2Е»
  3. Устройство холодильника «ВЕГА-2М»
  4. Устройство настенного холодильника «Визма»
  5. Устройство и ремонт холодильников марки «Бирюса-6», «Бирюса-10»
  6. Холодильники  «Бирюса-18», «Бирюса-22», «Бирюса-22-1»
  7. Устройство и ремонт холодильников марки «Донбасс»
  8. Холодильники «Донбасс-II», «Донбасс-III», «Донбасс-10Е», «Донбасс-10М»
  9. Устройство и ремонт холодильников марки «ЗИЛ-Москва»
  10. Холодильники «ЗИЛ-64» КШ-260П, «ЗИЛ-65» КШТ-400П
  11. Устройство холодильника «Каспий» КШ-160
  12. Устройство и ремонт холодильника «Кодры» КШ-160
  13. Устройство холодильника «Минск» КШД-420/120
  14. Устройство и ремонт холодильников марки «Минск-12, 16»
  15. Устройство и ремонт холодильника «Минск-15» КШД-2М
  16. Устройство и ремонт холодильника «Минск-25» КШД-350/80
  17. Устройство и ремонт холодильника «Мир» КШД-270
  18. Устройство холодильника «Ока-6» КШ-300П
  19. Устройство холодильника «Ока-125»
  20. Устройство холодильников «Ока-126», «Ока-127»
  21. Холодильники  «Ока-215», «Ока-216», «Ока-217», «Ока-329», «Ока-513»
  22. .
  23. Устройство и ремонт холодильника «Орск» КШ-180
  24. Устройство и ремонт холодильников «Океан» КШ-160, «Океан-3» КШ-180
  25. Устройство и ремонт холодильников «Памир» КШ-160, «Памир-7» КШ-240
  26. Устройство и ремонт холодильников «Полюс-10» КШ-260
  27. Устройство и ремонт холодильников марки «Саратов»
  28. Устройство и ремонт холодильника марки «Саратов-103»
  29. Устройство и ремонт холодильника марки «Саратов-258» КШД-200/30
  30. Устройство и ремонт холодильников «Саратов-544, 545, 557, 549, 550»
  31. .
  32. Устройство и ремонт холодильника «Смоленск-3Е» КШ-120П
  33. Устройство и ремонт холодильника «Смоленск-6» КШД-180
  34. Устройство и ремонт холодильника «Смоленск-8» КШ-80
  35. Устройство и ремонт холодильника «Смоленск-414» КШ-165/22
  36. Устройство и ремонт холодильника «Смоленск-515» КШД-165
  37. .
  38. Холодильники «Снайге-1М», «Снайге-2», «Снайге-8», «Снайге-15»
  39. Холодильник «Снайге С290»
  40. Холодильник «Снайге FR240, FR275»
  41. Холодильник «Снайге RF270, RF310, RF315»
  42. Холодильник «Снайге RF300, RF360»
  43. Холодильник «Снежинка» КШ -240
  44. .
  45. Устройство холодильника «Чинар» КШ-240
  46. Устройство холодильника «Чинар-7» КШД-220/40
  47. Устройство холодильника «Юрюзань-207» КШД-220/40
  48. Устройство холодильника «Ярна-4» КШ-120
  49. Устройство и ремонт холодильников «NORD»
  50. .
  51. Коды ошибок и схемы межблочных соединений холодильников СТИНОЛ с электронным управлением
  52. Устройство и ремонт холодильников
    «STINOL-101» , «STINOL-107» , «STINOL-123» , «STINOL-124»
  53. Проверка и замена терморегулятора в холодильниках «Stinol-101/103»
  54. Устройство и ремонт холодильников «STINOL-102», «STINOL-103»
  55. Устройство и ремонт холодильника-морозильника «STINOL-104» КШТ-305 (NF3304Т)

Холодильники абсорбционного типа

  1. Устройство и принцип работы холодильников абсорбционного типа
  2. Устройство и ремонт холодильника «Дон-3»
  3. Устройство холодильника «Кристалл-2»
  4. Устройство и ремонт холодильника «Кристалл-4»
  5. Устройство и ремонт холодильника «Кристалл-9М» АШД-200П
  6. Устройство и ремонт холодильника «Иней» АШ-120
  7. Устройство холодильников марки «Ладога»
  8. Устройство холодильников марки «Садко»
  9. Устройство и ремонт холодильника «Север-7» АШ-100
  10. Устройство холодильника-бара «Спутник» АШ-60

Холодильники термоэлектрического типа

  1. Устройство, принцип действия и ремонт холодильников
    ХАТЭ-12М, ХАТЭ-24 У4, ХТЭП-13, 8ПР, «Холодок»
  2. Устройство и ремонт холодильника  «Чайка» ТЭХ-40

Морозильники

  1. Морозильники «Атлант»
  2. Устройство и ремонт морозильников «Минск-17» МШ-160, «Минск-18» МШ-220
  3. Морозильник «Бирюса-14» МШ-120
  4. Морозильник «Бирюса-15» КШМХ-120/150
  5. Морозильник «Гиочел-1201» МС-120
  6. Морозильники «Саратов-104» МКШ-300, «Саратов-106» МКШ-125
  7. Морозильники «Саратов-117, 154, 156» МШ-90, «Саратов-127, 129, 153» МКШ-135
  8. Морозильник «Смоленск-7» МКШ-50
  9. Морозильник «Смоленск-109» МКШ-120
  10. Морозильник «Снайге F100»

Модернизация холодильников.

  1. Таймер задержки включения холодильника.
  2. Временное регулирование температуры в бытовых компрессионных холодильниках.
  3. Электронный регулятор температуры холодильника STINOL-104
  4. Увеличение морозильной камеры старого холодильника.

Новый взгляд на холодильную технику.

  1. Студенческий холодильник
  2. Холодильник наоборот

Мы рекомендуем еще посмотреть:

Летопись радиотехники: 1895 - 1899
1895
  • Александр Степанович Попов (1859–1905/06), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях (в т. ч. для радиосвязи). В начале 1895 создал «прибор для обнаружения и регистрирования электрических колебаний» – первый радиоприемник и продемонстрировал его 25.04 (7.05 по н. стилю), используя в качестве источника электромагнитного излучения вибратор Герца, а в качестве регистрирующего устройства когерер Лоджа. Во время опытов обнаружил (1895), что приемник реагирует также и на грозовые разряды. Построил специальный прибор, записывающий на движущуюся бумажную ленту сигналы, вызванные электромагнитным излучением гроз. Прибор впоследствии был назван «грозоотметчиком» и использовался (1895–1896) для изучения характера атмосферных помех. В своей статье «Прибор для обнаружения и регистрации электрических колебаний», опубликованной в журнале русского физико-химического общества в 1896 Попов писал: «В соединении с вертикальной проволокой длиной 2.5 метра прибор отвечал на открытом воздухе колебаниям, произведенным большим герцевым вибратором (квадратные листы 40 сантиметров в стороне) с искрой в масле, на расстоянии 30 сажен (64 м)… При дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояния при помощи быстрых электрических колебаний».
  • Гульельмо Маркони (Marconi) (1874–1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил первые опыты по практическому использованию электромагнитных волн. Главная фигура в истории развития и становления радио как средства связи. Нобелевская премия 1909 (совместно с К. Ф. Брауном). В 1894 начал эксперименты по передаче радиосигналов в окрестностях своего дома в Болоньи (Италия). В 1895 разработал аппарат, с помощью которого осуществил передачу сигналов на расстояние нескольких километров. В своих опытах размещал приемник и излучатель по разные стороны холма на расстоянии примерно 2-х миль. Помощник стрелял из винтовки всякий раз, когда принимал символ «S» в коде Морзе.

А.С. Попов [14].

Г. Маркони [64].

1896
  • 2 июня Гульельмо Маркони получил патент Великобритании (№12039) на изобретение беспроводного телеграфирования. Состоялись демонстрации радиосвязи на Бристольском канале (Лондон) и на равнине Солсбери (первые официальная демонстрация состоялась 27 июля). Суть патента, в частности, состояла в том, что для существенного увеличения дальности связи, необходимо использовать более длинную (высокую) антенну.

 

1897
  • 20 июля Гульельмо Маркони зарегистрировал в Лондоне компанию «Wireless Telegraph Trading Signal Company, Ltd.» («Торговая Компания Беспроводного Телеграфа и Сигналов»).
  • В июле по приглашению итальянского правительства, Маркони возвратился в Италию, где в Ла-Спезии (La Spezia) осуществил связь между береговым арсеналом и находящимся в море линкором «Сан-Мартино» («San Martino») на расстояние 18 км.
  • Оливер Джозеф Лодж (Oliver Joseph Lodge) (см. 1894) изобрел и запатентовал (16 августа 1898) принцип настройки колебательной системы на резонансную частоту с помощью изменения индуктивности и емкости (патент впоследствии приобретен Маркони).
  • Александр Степанович Попов удостоился Почетного диплома Нижегородской Всероссийской промышленной и художественной выставки «За изобретение нового и оригинального инструмента для исследования гроз». Установил (весной 1897) радиосвязь на расстояние ок. 600 м, а затем (летом 1997) до 5 км между кораблями в Кронштадтской гавани. Во время опытов обнаружил, что металлические корабли влияют на распространение волн. Предложил способ определения направления на работающий передатчик.
  • Эрнст Резерфорд (1871–1937), новозеландский физик в дальнейшем проживающий в Англии (Кембридж), опубликовал статью «Магнитный детектор электрических волн и некоторые его применения». В статье, в частности, сообщалось об использовании детектора в опытах по обнаружению электромагнитных волн на больших расстояниях. Он писал: «Мы работали с вибратором Герца, имеющим пластины площадью 40 см2 и короткий разрядный контур. Мы получили достаточно большое отклонение магнитометра на расстоянии 40 ярдов (37 м). Причем волны проходили через несколько толстых стенок, расположенных между вибратором и приемником… В дальнейших опытах была поставлена задача – определить максимальное расстояние от вибратора, на котором можно обнаружить электромагнитное излучение… Первые опыты проводились в лаборатории Кембриджа, причем приемник находился в одном из дальних зданий. Достаточно большой эффект был получен на расстоянии около четверти мили от вибратора, и судя по величине отклонения (магнитометра), эффект можно было бы заметить на расстоянии, в несколько раз большем…». В дальнейшем Резерфорд узнал об успешных результатах Маркони и прекратил опыты со своим детектором. В последствии обессмертил свое имя в области радиоактивности.
  • Карл Фердинанд Браун (Karl Ferdinand Braun), немецкий физик (см. 1874). Изобрел (1897) электронно-лучевую трубку (ЭЛТ) – так называемую «трубку Брауна» (в будущем – кинескоп) для исследования электрических колебаний (осциллограф).
  • В августе в деревне Сакроу (Sacrow) недалеко от Берлина и Потсдама, Адольф Слаби (Adolf Slaby) (1849–1913) и его помощник Георг Арко (George von Arco) (1869–1940) провели первые испытания системы связи, подобной созданной Маркони. До этого (май 1897) Слаби участвовал в экспериментах Маркони с радиосвязью на Бристольском канале в Англии. Мачта первой антенны была установлена на крыше церкви «Heiland». В настоящее время на здании установлена мемориальная доска в честь этого события. В октябре 1897 осуществили успешную передачу на расстояние 21 км. В дальнейшем между Слаби и Маркони возникли трения по правам на изобретения системы связи. Патент Маркони в Германии был зарегистрирован на год раньше патента Слаби, тем не менее, Слаби утверждал, что изменил антенную систему Маркони и изобрел другое устройство. Система, предложенная Слаби и Арко, в 1903 была объединена с разработками Брауна и «Siemens Halske». В результате возникла собственная германская программа развития радио, основным разработчиком которой стала компания «Telefunken».
  • В ноябре открыта первая стационарная станция Маркони в Нидлесе (Needless) на острове Уайт (Великобритания) и были проведены сеансы связи с г. Борнмутом (23 км).
  • Джозеф Джон Томсон (Thomson) (1856–1940), английский физик, президент Лондонского королевского общества (1915–1920). Исследовал прохождение электрического тока через разреженные газы. Исследуя «катодные лучи», открыл (1897) электрон и определил (1898) его заряд. Предложил (1903) одну из первых моделей атома. Один из создателей электронной теории металлов. Нобелевская премия (1906).

Грозоотметчик А.С. Попова (внешний вид) [67].

А. Слаби [1].

Д.Д. Томсон, 1895 [1].

1898
  • В июле Маркони обеспечил журналистское радиотелеграфное обеспечение для газеты «Дэйли Экспресс» во время регаты Королевского яхт-клуба. Сообщения с палубы яхты передавались в Кингстоун, а оттуда по телефону в Дублин.
  • 26 августа по радиотелеграфу был впервые послан сигнал бедствия с плавающего маяка.
  • В помещении бывшего текстильного завода на Холл Стрит (Hall Street) Маркони организовал первую в истории радиотехническую фабрику. Насчитывала примерно 50 работников (здание существует и используется до сих пор).
  • 1 декабря Вальдемар Поулсен (Valdemar Poulsen) (1869–1942) датский инженер-электрик разработал и запатентовал первый практический аппарат для магнитной записи и воспроизведения звука – «телеграфон» («telegraphone»). В качестве носителя использовалась стальная проволока, которая намагничивалась под действием изменяющегося магнитного поля, формируемого звуком. Устройство привлекло повышенное внимание на выставке в Париже в 1900. Несколько слов, произнесенных австрийским императором Фрэнсисом Джозефом, при посещении им выставки были записаны на проволоку телеграфона. В настоящее время, по всей видимости, самая ранняя из сохранившихся магнитных записей.

В. Поулсен [1].

Телеграфон Поулсена, 1898 [1].

1899
  • 3 марта была впервые проведена операция по спасению потерпевшего кораблекрушение теплохода «Масенс» («Mathens») с использованием радиотелеграфной связи.
  • 27 марта Маркони осуществил телеграфную связь через Ла-Манш между Англией и Францией (из Wimereux вблизи Boulogne-sur-Mer до South Foureland к югу от Дувра) на расстояние 32 мили (ок. 60 км).
  • Гринлиф Виттер Пикард (Greenleaf Whittier Pickard) (1877–1956), американский инженер-электрик. Продемонстрировал (1899) беспроводную передачу речи с помощью радиоволн. В обсерватории «Blue Hills» в Милтоне (штат Массачусетс) передал голосовые сообщения по радио на расстояние 10 миль (ок. 18 км). Для восстановления звукового сигнала из ВЧ несущей в приемнике использовался угольно-стальной детектор. Наиболее известен изобретением кристаллического детектора (см. 1906).
  • П.Н. Рыбкин и Д.С. Троицкий – помощники Попова – обнаружили детекторный эффект когерера. На основе этого эффекта Попов построил «телефонный приемник депеш» для приема и прослушивания радиосигналов на головные телефоны и запатентовал его (Русская привилегия №6066 от 1901). Приемники этого типа выпускались в 1899–1904 в России и во Франции (фирма «Дюкрете») и широко использовались для радиосвязи.
  • Карл Фердинанд Браун (Karl Ferdinand Braun) (см. 1874), немецкий физик, предложил (патент 1899) разделить антенну и искровой разрядник. При этом разрядник помещался в замкнутом колебательном контуре, а антенна связывалась с этим контуром индуктивно, при помощи высокочастотного трансформатора. Схема Брауна позволяла излучать в пространство существенно большую часть энергии.
  • Вильям Дуддель (William Du Bois Duddell) (1869–1942), британский инженер, обнаружил, что угольная дуговая лампа могла генерировать звуки в диапазоне слышимых частот. С помощью клавиатуры, соединенной с дуговыми лампами, устройство позволяло воспроизводить звуки («поющая дуга») – первый электромузыкальный инструмент. Изобретение осталось занятной диковинкой и в то время не нашло применения. В дальнейшем послужило основой для работ Поулсена по созданию дугового генератора.
  • Первое использование радиотелеграфной связи в полевых условиях во время Англо-Бурской войны в Южной Африке (1899–1902). Британская армия экспериментировала с наземной системой Маркони, а британский флот успешно использовал радиотелеграф для связи между военно-морскими судами.
  • Шведская компания «Ericsson» открыла в Санкт-Петербурге фабрику по выпуску телефонного оборудования (существует до настоящего времени пор под названием «Красная заря»).
  • В сентябре в США Маркони осуществил телеграфную радиосвязь между крейсерами американского флота «Нью-Йорк» и «Массачусетс».
  • Создана компания «The American Marconi Co.».

 




Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.